DIFFRACTION OF A STRONG SHOCK WAVE
AT A THIN WEDGE

I. V. Simonov UDC 532,593

The diffraction of a strong shock wave at a wedge is investigated on the assumption of a small differ-
ence between the properties of the medium and the wedge. The wedge angle and its location relative to the
wave front are arbitrary,

At the high pressures and temperatures occurring behind a strong shock (P~ 10 atm) it is reasonable
in many cases in a theoretical treatment to neglect the resistance of the material and to describe its state
by comparatively simple models of the medium, e.g., the perfect fluid model. Compavrison of the results of
such a treatment with experiment yields boundaries for the application of the model and a direct indication
of the effect of the neglected factors.

The problem addressed here reduces to a Hilbert problem. It turns out that the condition for the exist-
ence of a solution to the Hilbert problem in a class of functions having a zero of at least second order at in-
finity is identically the condition for stability of the shock wave in a homogeneous medium [1, 2].

1. A plane strong stationary shock wave, moving through a homogeneous unstressed medium with
speed Dy, meets a wedge embedded in the medium at time t=0, The faces of the wedge make angles oy and
ay with the surface of the wave front; Py, V,, and Uj are, respectively, the pressure, specific volume, and
mass velocity behind the incident shock, 0, V, 0 and 0, V', 0 being, respectively, their values ahead of the
front in the medium and in the wedge; V*°=V*° (P) and V=V, (P) are the normal shock adiabat equations
for the material of the medium and wedge, giving the specific volumes as a function of pressure.

The initial densities and the behavior of the materials of the medium and wedge when shock loaded are
not very different. We introduce the parameter

o — max P =Y P
V*

°(P)

Then for ¢ =0 the shock wave does not see the wedge; and for ¢ «<1 we address the problem of deter-
mining the small perturbations resulting from diffraction of all the quantities, in a linear approximation.
Here we still consider that the order of smallness of the pressure perturbations is less than that of mate-
rial strength properties behind the shock, so that effects associated with the strength can be neglected. We
note that as the shock strength increases, so does the role of the thermal components of the pressure and
internal energy of the material behind the shock (in the limit the solid behaves as a gas) [3]. Accordingly,
the role of the strength properties diminishes. Therefore, the above approximation makes sense.

0<P<P (P>P)

It is reasonable to postulate that the speed of sound in the medium and in the wedge behind the shock
differ by only a small amount. Hereafter we shall neglect this difference (and therefore drop terms of higher
order of smaliness in the corresponding equations) and assume the sound speed everywhere behind the front
to be c.

We postulate that the inequality Dy—U,<c is satisfied. Then for Ay p<Px, where Ox is the limiting
angle, whose value willbe determined below from the condition of reguiar refraction of the shock at the faces of
the wedge, the picture of the diffraction is as shown in Fig. 1. Then, inthe vicinity of the points of intersection of
the shock front with the wedge faces, a triangular wave configuration is formed with incident and refracted
shocks and reflected sound waves and flow zones with constant parameters. An unsteady disturbance propa-
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gates from the wedge center displaced by the flow, bounded by the arc of the Mach circle ABCD and the
attached fronts of reflected sound waves, and by the shock wave section AD.

For oy, 3> 0, in the vicinity of the points of intersection of the shock front with the wedge faces, there
is nonregular refraction (Fig. 2). There is only one region of unsteady flow which spans the sections of the
shock wave outside the wedge., For ¢ >0 4, 0,< &« and vice versa the picture of the diffraction is clearly
a combination of the above cases.

We introduce a system of coordinates x'y' fixed at the moving center of the wedge, and the following
notation for quantities in the perturbed region: P — pressure, U~—U, —~ mass velocity, Vand V', — specific
volumes in the medium and in the wedge.

Now we write the shock adiabat equation in the form
Ve(P)=V,>(P)[1 + v, (P)] .1
and we approximate to the unknowns in the form
P=Py+ep, U—Us=(u, ew)

The perturbed quantities p', u', and w' satisfy the ordinary linearized equations of two-dimensional
flow of an ideal compressible fluid.

The problem considered is one where the functions p', u', and w' are homogeneous functions of the co-
ordinates and the time of zero measurement. We introduce the dimensionless and similarity variables

p=Vw /& u=uw/c,w=w/c, z=2/ct, y=y/ct
The equations for p, u, and w have the form

_ Ou , 0w _0op __%p_ _ .8 A
Dp=45+%, Du=3, Dw—L (D—zaz—kyay) 1.2)

In order to derive the conditions in the perturbed section of the shock front, we use Eq. (1.1) to repre-
sent V' and Vy, V! at the front, and the equation of the front in the form

V=V 0=V, (1 +ev)

Vi Vet —ejop’), Vi =Vl +€ Uy —job)] for z=4 (1.3)
z==k 4 ef (y)
av,°\.
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Then these conditions take the form
in the medium

p=A(f—yf), u=Bp, w=—Mf fox z=k
in the wedge

pzA(f'—yf')+A17u=Bp+Bl7w:—Mf’ for z=1k
A_ZMM A__kM(Zx—-i)v—xvo B_ 147

—ha=wn =T
e — _ Ve _Us _Do—Uo . _ k%o
By= Mgy (x=h, M=Dp k=22, j=25R)

We reduce the problem to a search for the single function p. The solution for p(x, y) is constructed
differently in the regions r<1 and r>1 (r?=x%+y?), since the type of equation that p(x, y) satisfies is elliptic
in the first region and hyperbolic in the second. We join these solutions at the boundary r=1 to make them
continuous [4]; this is done by satisfying the conditions of dynamic and kinematic compatibility.

From the condition for continuity of pressure and normal velocity component on the line of the contact
discontinuity LOF, we have that the function p(x, y) and its first derivatives are continuous on LOF. This is
a consequence of linearizing the problem.

2. Inthe case oy ;< o, we examine the flow in regions LBM and LMA (Fig. 1). To determine the
angles v, and By, which’ determine the position of the sound front LB and of the wedge face displaced by the
flow, we write down the relations

Dy  ¢—Upcos(ou+ T _ Us cos (o1 — B1) @.1)
sin oy sin 11 sin (i :

which derive from the condition that, in the coordinate system with the front LB and the point of intersection
of the fronts L fixed, the lines of the fronts are fixed.

We obtain
_ ko — Msin?oas — V (ko — M sin? uﬂ* +1/4 M2sin?® 2¢; — sin? oy
T1=2arctg 172 M sin 201 F sin 2.2)
By = arctg [(1 — %) tga, /(1 + ntgay)] (ko = Do / co)

Here one of the two solutions of the first equation of Eq. (2.1) is chosen as satisfying the physical sense
of the problem,

We seek a constant solution in the regions LBM and LMA. Let u.n1 be the discontinuity in velocity per-
turbation in passing through LB; u and w; the perturbed velocity componentsin region LBM; and p; the per-
turbed pressure,

Adding the condition at an acoustic discontinuity
Py =, (2.3)

to the conditions (1.4) at the front, and also the condition for continuity of the normal component of velocity
perturbation at the contact discontinuity LO

—uplm = u, + w, tg (oq — By) (m = cos {r1 4 Br) / cos (@1 — B1))
and taking into account that
fly) =0

we obtain a closed system of linear equations to determine the constant parameters uy!, py, wy, uy, and ',
Then

KM mpo—v' - n(vo 1+ (1 —2%) o) tgPon
L= ™ 2km A4 —xd - igim 2.4)

The remaining quantities are determined simply in terms of p; from Egs. (1.4) and (2.3).

The parameters of the constant flow zones ECF and DEF are calculated via similar formulas., We
shall denote these quantities by the same letters’ with subscript 2.
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We note that at the displaced contact bounddry LOF there is a tangential discontinuity in the velocity
vector perturbation.

We determine the limiting angle ¢, from the condition that in the X'y' coordinate system the velocity
of the point of intersection of the fronts is equal to the sound speed c:
ay = arcsin (kg / ViZ + kg2 (a=VI—F)

It should be noted that the numerator in the expression for p; can generally go to zero for a certain
value ¢y. It takes a minimum value for o;=q,, and it is positive for small enough ¢y. For a solution to
exist for all 0= o= @, We require that the condition

wht (1 + ) — B (1 — ) >0 (2.5)
be satisfied.
Here we have simultaneously solved the problem of regular refraction of a strong plane shock wave

at the interface of two slightly different semi-spaces. For o;—0 the solution of the problem of a normally
incident shock is obtained.

3. From the condition of pressure continuity in passing through the arc of the Mach circle, Eqs. (1.4),
and Eq. (1.8), we find the boundary condition for the normal and tangential derivatives of the pressure
adp/on + bop/ds = d
Here n is the external normal and s is the tangent ingoing around ABCD positively (Fig. 1) (ABD in
Fig. 2)
a=1, b= Byt — (B+ k% on AD
a=0, b=1 on ABCD (ABD)
d=p,8(0—8)— p,b (6 — 92) for Qpy << Oy
d= (B + A By )0y — 1) — S — ¥2)) for Q0 > Gy
B, = kM / k*A, 8 (8) — the Dirac delta function
O, =0p=n+oa +y, 8=0=0—0—v ¥ =y=
= —ku~letg @y, Yy = yr = kx7letg oy, 0 = arc itg(y/ z)
For x=k we obtain from Eq. (1.4) ’

18p _ Adw
—y— -a—y— = 7‘4—‘ 0y (d1’2< u’*)
18p Adw A . _ .
v oy~ M + v Oy —y)—8@y—%) (@5 > )
Integrating the latter along the perturbed section of the shock wave AD, we obtain the condition for
smooth junction of the front

S LR gy Ay —w) for <

p ¥ % 3.1)
Ctop 4 (b)Y b an>a
A§§~y_7y—dy—‘4‘(yx yz) for d1p > Cu

Following the method of functionally invariant Smirnov-Sobolev solutions [4], we transfer the problem
to the complex variable plane

2=y + iy = ("t — }/_'r‘2 — 1) exp (i6)

and put
p = ImP (2)

The region of unsteady flow in the complex plane z corresponds to that shown in Fig. 3. The equations
of the circular arc have the form

[z§=1,2|z[cos6=}c(1+}z[2)
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We perform conformal mapping of the interior of the figure to the upper half-plane by means of the

transformation

(=4 in— - Eoilrs)

Here the arc corresponding to the section AD of the shock wave transforms to the interval ~1<£<1;
the points B and C lie outside this interval, and the points L and F lie inside it,
We introduce the function

op , .0 dP
FrO=s+ig ="

which is analytical in the upper half-plane of ;. On the real axis F+ (¢) satisfies the condition
op op _ 3.2

Here
a=tV1—8, b=B2—B, (EI<Y
a=0, b=B—-B, (E1>1
d=(B— By)(p:S(E—E&) —Psd E—E2)) (o, <)
d=(BE+ A4, B,) (8(E — &) — 0 (E —Eu)) (0,2 > %4)
g =t = ky Y (cosec O, — kctg 8,), & = Ec = k" (cosec B, — &k ctg 0,)
Ey="EFL= —xtctga,, B, =Er=x"tctga,

We have thus formulated an inhomogeneous Hilbert problem with continuous coefficients. We seek a

solution of it in the class of functions that have a zero of at least second order at infinity (this stems from
the requirement that the function p(z) be bounded as z —«).

The index of the problem is unity if
0< I (1 — j) <l (1 + ) ©-3)
and zero if

BA—-)>ski@A+)) o j>1 (3.4)

In case (3.4) there is no solution in this class of functions. To check this, it is enough to {«rrite the so-
lution for thig case in the standard formula (14.22') of [5], p. 265. We note that the condition k? (1—j) >
nk,? (1+j) is the same as requirement (2.5).

The condition for the existence of a solution of Eq. (3.3) is equivalent to the condition for stability of
a plane stationary shock wave in a homogeneous medium [1, 2]. This is an interesting point, which confirms
the need for the limitation (3.3) on the properties of the medium for a stable shock to exist in it.

From now on we consider Eq. (3.3) to be satisfied. We find the regularizing factor q(¢) of the function
b() +ia ) by continuing the function Bg2—By+if+ 1-—52 over the whole real axis:

(B — B, +EVE 1) /(B—By), Et>1
g =y (B —B,—tVB—1)/(B—B,), E<—1
1, le] <1

Multiplying'both sides of Eq. (3.2) by q{), we bring it to the form
Im [F* (8)/ ®* () = ¢ (B) d (B) ©-5)
where &7 ) is the boundary value of the analytic functions defined in the upper half-plane

1
By L Y1 —¢2

+ -
DY = 5
Here the radical must be formed so that it takes positive values for ~1<£<1, 5=0.

For condition (3.3), ®* (¢) has no singularities in the upper half-plane, including the real axis.
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Extrapolatlng the boundary condition (3.5) into the complex plane and taking 1nto account that the func-
tion FF (g)/d: (z) must be regular at infinity, we have

FH(E) = O (Y [¥" (§) + (ol (3.6)

Here

1 § )
HO) = = (TeE=s w*(&a)@z—é))' R
'lp ()4— ___1_(3154 +AJBZ__B1Ez’+A1B2) .
m\T G- E_f )0 > %

The real constant C,; is determined from condition (3.1).

The transformation to the original similarity coordinates is accomplished via the formula

po WA=k it o) VI =y
ki (f — x2)

The pressure is determined from the formula

L
pEw=Im { (% + %)+ pa

-1
Here
Pa = P1 for Gpp << Gy, pa =0 for oy, >a,

In the case oy, 2> oy the pressure (and also f', u, and w) has a logarithmic singularity at the points L
and F, A similar s1ngu1ar1ty appears in the case of a subsonic incident shock wave on a thin wedge in the
Lighthill problem [6, 7]. We note that this singularity vanishes for o;=a, and ¢y =0. Here the solution for
o1 > ay goes over continuously to that for @y < ay.

Along the curved section AD of the shock wave the pressure distribution has the form

u/ky .
= (e )  _ EVI—E
ro = (F), g +ra (F), = mw—mrrea—e ©

-1

3.7)

. pi p:
X [n(l)*r o) G — %) n®* Gy E — &) + Co] {2y, < %)

(%%)nzo = (B2 — 32)2:_ B2 (1 —¢Y) [(Bgz - Bz) (q>(§2)6 (g‘_ gz)_“ P (gl) 8 (g - gl))—'

VT2 (8 — 28 4] 0= BE+ 4B @G>

Here we should take the integral in Eq. (3.7) to have the principal value.

The remaining functions are determined in closed form in terms of p. For example, the shape of the
curved portion of the shock wave is calculated from the formula

ulky
fw) = {p W +y (P;;‘ffM‘ =0+ dgﬂ

-1

The functions u and w are determined from Eq. (1.2):

w0 = +Zdotu,® w0)= { 4% do+u®)

19 (8) ro(8)

L

Here the integration is performed along the radius
ro (B << 0 << 2m — B) = 1, ry(—0, << 6<<8B) =£k/cosb,

8, = arctg (k,/ k)
and ug (9) ‘and w, (9) are the values of u and w on the boundary of ABCD (ABD).
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We find the shape of the perturbed contact boundary
bis)=—s{pu(p)dp

Here s is the coordinate along LO, sy=k/cos (cy~p1) for oy < a,, 5¢=1 for a1 > a,, y(s) is the displace-
ment of the contact boundary along the normal to LO, and

U () = u (s) cos (&, — By) + w(s) sin (a; — B,)
The shape of the FO boundary can be determined analogously.

We note that in the case o < oy 03> a4 the solution is constructed simply by combining the solutions
with regular and nonregular refractions. In the special case, putting oq =0, ay=n/2, we can obtain diffrac-
tion at a right angle.

In conclusion we note that there is no theory for nonregular refraction. The results obtained in this
paper may be of interest from this viewpoint.

The author thanks N. V. Zvolinskii and L. M. Flitman for discussion of the work.
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